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The linear stability of plane Poiseuille flow has been studied both for the steady 
flow and also for the case of a pressure gradient that is periodic in time. The 
disturbance streamfunction is expanded in a complete set of functions that 
satisfy the boundary conditions. The expansion is truncated after N terms, 
yielding a set of N linear first-order differential equations for the time depend- 
ence of the expansion coefficients. 

For the steady flow, calculations have been carried out for both symmetric 
and antisymmetric disturbances over a wide range of Reynolds numbers and 
disturbance wave-numbers. The neutral stability curve, curves of constant 
amplification and decay rate, and the eigenfunctions for a number of cases 
have been calculated. The eigenvalue spectrum has also been examined 
in some detail. The first N eigenvalues are obtained from the numerical 
calculations, and an asymptotic formula for the higher eigenvalues has been 
derived. For those values of the wave-number and Reynolds number for 
which calculations were carried out by L. H. Thomas, there is excellent 
agreement in both the eigenvalues and the eigenfunctions with the results of 
Thomas. 

For the time-dependent flow, it was found, for small amplitudes of oscilla- 
tion, that the modulation tended to stabilize the flow. If the flow was not com- 
pletely stabilized then the growth rate of the disturbance was decreased. For a 
particular wave-number and Reynolds number there is an optimum amplitude 
and frequency of oscillation for which the degree of stabilization is a maximum. 
For a fixed amplitude and frequency of oscillation the wave-number of the 
disturbance and the Reynolds number has been varied and a neutral stability 
curve has been calculated. The neutral stability curve for the modulated flow 
shows a higher critical Reynolds number and a narrower band of unstable 
wave-numbers than that of the steady flow. The physical mechanism responsible 
for this stabiIization appears to be an interference between the shear wave 
generated by the modulation and the disturbance. 

For large amplitudes, the modulation destabilizes the flow. Growth rates of 
12 Fluid Mech. 34 
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the modulated flow as much as an order of magnitude greater than that of the 
steady unmodulated flow have been found. 

1. Introduction 
There is a considerable body of theoretical literature on the solution of the 

Orr-Sommerfeld equation for steady plane Poiseuille flow. The application of 
asymptotic methods of analysis to this problem has been summarized by Lin 
(1955), Stuart (1963), Shen (1964) and Reid (1965). Thomas (1953) has used 
numerical methods to obtain the eigenvalues with high accuracy for a number 
of values of the disturbance wave-number and flow Reynolds number. All of 
these solutions, however, are for the least stable eigenmode only, and most of 
them are restricted to values of the wave-number and Reynolds number which 
are close to the stability boundary. 

To our knowledge, only Southwell & Chitty (1930), Grohne (1954) and Galla- 
gher & Mercer (1964) have reported calculations of any of the higher eigenvalues 
for any plane parallel flow. Southwell & Chitty, Grohne and Gallagher & 
Mercer reported the first four eigenvalues for plane Couette flow. There is 
satisfactory agreement between the results of Southwell & Chitty and those of 
Gallagher & Mercer. There are, however, considerable differences between 
Grohne’s results and those of the others. Grohne has also calculated the first 
four eigenvalues for plane Poiseuille flow. 

I n  contrast to the above situation, very little theoretical work has been done 
on the stability of time-dependent flows (see, however, Shen 1961; Greenspan 
& Benney 1963; Kelly 1965, 1967; Conrad & Criminale 1965a, b ) ,  though two 
recent experimental studies of the stability of periodically modulated flows 
make a better understanding of this subject highly desirable. 

These experiments are studies of modulated Couette flow (Donnelly, Reif & 
Suhl 1962; Donnelly 1964) and modulated Poiseuille flow (Gilbrech & Combs 
1963). I n  the Couette flow experiment, the outer cylinder was stationary and 
the inner cylinder was rotated. The rotational speed of the inner cylinder was 
sinusoidally modulated, and the amplitude of modulation, as well as the 
modulation frequency, was varied. It was found that in all cases the onset of 
instability was inhibited by modulating the rotational speed of the inner cylin- 
der. The degree of inhibition was dependent on the modulation amplitude and 
frequency. At the optimum frequency the flow was stable, provided that the 
angular velocity dropped below the critical angular velocity at some point in 
the cycle. I n  the Poiseuille flow experiment the pressure gradient in the pipe 
was sinusoidally modulated, disturbances were generated in the flow, and the 
growth rate was measured. The experimental results indicated that, if the 
modulation frequency is held fixed and the amplitude of the pressure modula- 
tion is increased from zero, the critical Reynolds number first increases and then 
decreases. The increase in the critical Reynolds number can be quite large; a t  
one modulation frequency the critical Reynolds number was more than doubled. 
The amplitude a t  which the critical Reynolds number is a maximum appears 
to decrease with increasing frequency of modulation. 
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There is further interest in the stability of time-dependent flows since i t  
appears that the laminar-turbulent transition of a steady flow is connected to 
the instability of a time-dependent shear flow. It has been suggested (Greenspan 
& Benney 1963) that, in order to understand the later stages of the laminar- 
turbulent transition, the linear stability of the time-dependent flow formed by 
the superposition of the primary instabilities and steady base flow should be 
studied. 

In  the work reported in this paper, we have studied the stability of plane 
Poiseuille flow by the method of expansion in a set of orthogonal functions. This 
is the method used in the first successful theoretical study of hydrodynamic 
stability-Taylor’s (1923) solution of the Couette flow problem-but it has 
been given little use in recent years. The three recent applications of this 
method of which we are aware are studies of generalized Couette flows by Chan- 
drasekhar and co-workers (Chandrasekhar 1961), of plane Couette flows by 
Gallagher & Mercer (1962, 1964), and of plane Poiseuille flow by Dolph & Lewis 
(1958). We will comment briefly on the latter study, since it deals (as does ours) 
with plane Poiseuille flow. 

Dolplz & Lewis used an expansion technique to study the stability of steady 
plane Poiseuille flow. They calculated a neutral stability curve using an eight- 
term expansion and also obtained a few results with a twenty-term approxima- 
tion. The results obtained with the eight-term approximation are in very poor 
agreement with the results of both the asymptotic theory and Thomas’s (1953) 
numerical calculations. However, the scattered results obtained with the twenty- 
term approximation show better agreement. The improved results with a 
twenty-term expansion suggest that with more terms Dolph & Lewis might 
have obtained high accuracy; but the poor agreement obtained with the eiglit- 
term approximation apparently convinced many workers in this field of the 
unsuitability of expansion techniques in the study of hydrodynamic stability. 
(See, for example, Reid 1965.) 

In  5 2 of this paper we apply the method of expansion in orthogonal functions 
t o  the problem of the linear stability of time-dependent, plane Poiseuille flow. 
The results for steady flow are presented in Q 3 and the results for the modulated 
flow are given in § 4. Section 5 contains a summary of the results and a discussion 
of their significance. 

A few of the results reported in this paper have been previously reported in 
abbreviated form (Grosch & Salwen 1967). 

2. Analysis 
2.1. Fornzubtion 

We wish to study the linear stability of time-dependent plane Poiseuille flow of 
an incompressible fluid. The distance between the plates that form the upper 
and lower boundaries is 1. The pressure distributions which we consider here 
will always have a steady component so that the flow will always have a steady 
component with a parabolic profile. The maximum speed of this parabolic 
profile we denote by [To. 

12-2 
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Throughout the remainder of this paper dimensionless variables will be used. 
The co-ordinates are measured in units of 1 and velocities in units of U,. The 
time scale is (Z/Uo) and the pressure scale is pU:, where p is the density. In  
terms of the dimensionless variables the boundaries are at  y = 5 4. The velocity 
distribution of the base flow in terms of the dimensionless variables will be 
written as U(y, t ) .  The Reynolds number of the flow is R = U,l/v, where v = p/p  
is the kinematic viscosity of the fluid, and is exactly twice the Reynolds number 
as defined by Lin and Thomas. 

It is assumed that the streamfunction of a small perturbation to the base 
flow can be written in the form 

@(., Y, t )  = $(!I, t )  eiax, (1) 

where a is the dimensionless wave-number of the disturbance. (The wave- 
number in these units is exactly twice that of Lin and Thomas,) After lineariz- 
ing the Navier-Stokes equations and eliminating the pressure, it  is found that 
$(y, t ) ,  the amplitude of the disturbance streamfunction, must satisfy 

= 94, 
where L = (@/ay2) - a2 and R is the Reynolds number. This is just the time- 
dependent version of the Orr-Sommerfeld equation. The boundary condition 
is that the disturbance velocity vanishes on the boundaries and hence that 

The approach to be followed is to expand $(y, t )  in a complete set of functions 
of y which satisfy the boundary conditions. The expansion coefficients are 
functions of time and from equation (2) a set of differential equations governing 
the time dependence of these expansion coefficients will be derived. 

2.2. ExpansioTL functions 

There are, of course, a number of possible choices of expansion functions. A 
convenient choice is the set of eigenfunctions of L2 which satisfy the boundary 
conditions (3) .  That is, the expansion functions are the solutions of 

L2G = A4G (4) 

(5) 

(6) 

Because of the symmetry of equations (5) and (6), the eigenfunctions are 
either even or odd functions of y. The eigenvalues corresponding to even eigen- 
functions are denoted by A, and must satisfy the equation 

or Gi" - 2a2G" + (a4 - A4)  G = 0 

G( & f) = G'( 5 i) = 0. with 

where 
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The corresponding eigenfunctions are given by 

where Cn is a normalizing constant, chosen so that? 

<Cn,cm> = 8nm* 

The roots of equation (7) are all real and 

An w ( 2 n - i ) n  (11) 
except when (a/n) is large. 

and must satisfy the equation 
The eigenvalues corresponding to the odd eigenfunctions are denoted by ,un 

The corresponding eigenfunctions are 

and Sn is the normalizing constant. The roots of (12) are all real and 

except when (a/%) is large. 
pn w ( 2 n + g ) n  (15) 

2.3. Matrix equations 

It is assumed that q5 can be expanded in a series in terms of the orthonormal 

expansion functions W 

$(Y, t )  = Z {an(t)Cn(y) + bn(t)fJn(y)} (16) 
n= 1 

so that an(t)  = {Cn, $); bn(t) = <Sn, q5)* 
Now take the inner product of one of the functions, say 

After integrating by parts, the left-hand side of (18) is 

(17) 

C,(y), with (2) : 

The right-hand side of (18) is, after integrating by parts and using the boundary 
conditions, 

<cry 2$) = R-I<L~c,, +> + ia (r$ - L U )  c,, $) 
00 

= {[R-lDi? + iaF$z]  an + iaGi2 bn}, (20) 
n=l 
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where D$% = (L2Cr, C,> = h;S',,, (21) 

(22) 

(23) 

(24) 

F F ~  = (:$ Cr, Cn) - (L( ucr) , ~ n >  , 

G$?A = (g C,, 8.) - (L( UC,), S,). and 

m da, * 
2 (LC,.,C%}- = C {[R-1D~~+iaFL~]a,+iaG1,2~b,). 
n= 1 at ,=I 

Thus 

In  an exactly similar way, taking the inner product of Sr with equation (2), 
it  is easy to derive 

m m 

(LS,, S,) db, = 'z; {iuF$2a, + [R-lDPA + iaGL?] bn}, ( 2 5 )  

with D$? = (L2Sr,Xn) = p~S',,, (26) 

(27) 

(28) 

n= 1 dt 

GFA = (5 s r ,  8%) - (U us,), fin>,  

P U  
and F ~ A  = (p sr, Cn)- (L(usr),Cn)- 

Equations (24) and (25) for Y = 1, 2, 3, ... constitute the stability problem. 
We now assume that the expansion for y5 can be truncated after N terms. 

This truncation enables us to reduce the stability problem to a set of 2N linear 
first-order differential equations, (24) and (25), for the time dependence of the 
expansion coefficients. We can then rewrite equations (24) and (25) in matrix 
form as 

(29) 

(30) 

dA 
C - = [R-'D(l) + i ~ P ( l ) ]  A + iaGc2)B, 

dt 

dB 
at 

8 - = iaF@)A + [R-1D(2) + iaG"] B, 

where A and B are the column vectors of the {a,} and {b,}, 

and D(l), D2), F1), F2), Gfl) and 
are D$:, I)?:, etc. After multiplying by 

are the ( N  x N )  matrices whose elements 
and 8-l we have 

where 
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2.4. Stability criterion 

Before proceeding further we shall discuss the criterion for stability in the case 
of steady and periodic flows. In  $2.5 we shall formulate the stability problem 
for our truncated matrix equation (33). 

I n  the study of the linear stability of a steady flow it is customary (Lin 
1955) to look for solutions to equations (2) and (3) with an eat time dependence. 
If, for any such solution, the real part of (T is positive, the flow is clearly un- 
stable since the disturbance grows exponentially with the time. If, for all such 
solutions, the real part of u is negative, it is concluded that the flow is stable 
against infinitesimal disturbances. 

This conclusion is based on the assumption that equations (2) and (3) possess 
a complete set of solutions of the form $(y )  eat or, equivalently, that the infinite 
matrix equation 

has a complete set of eigenvectors. The proof of this conclusion is difficult 
because the matrices involved are not Hermitian, but it has been carried out by 
Schensted (1960) for the case of plane Poiseuille flow (which we are studyingj 
and by Haupt (1912) for the case of plane Couette flow. The proofs were 
dependent upon the form of the base flow. 

If the base flow is periodic with period 7, we expect (by analogy with Flo- 
quet’s theorem) to have a complete set of solutions of the form 

$(Y 9 t )  eat, (39) 

where $ is a periodic function of the time with period r ,  so that the flow will 
be unstable to infinitesimal disturbances if and only if at  least one g has a 
positive real part. This may be justified as follows. 

Let {$,(y)} be a complete set of functions satisfying the boundary conditions 
(3) and let {$n(y, t ) }  be the solutions to equations (2) and (3) such that 

#?Z(U? 0) = $n(Y)- 
Then ~ $ ? ~ ( y ,  r )  may be expanded in {$n}: 

140) 

M Y ?  7 )  = c <6m(Y), $%(!A 7))$m(Y). (41) 
m 

The coefficients ($m(y) ,  $n(y, r ) )  define the transformation T from t = 0 to 
t = T for a general function satisfying the boundary conditions (3) for, i f f  ( y )  
is any such function, then 

$(Y, t )  = x($n>f)$n(Yd)  (42) 
n 

is a solution to (2) and (3) such that 

4tY90) = f ( y )  (43) 

Now let $,(y) be an eigenfunction of T so 

T i t  = 40 (45) 
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and define 

where 

(46) 

(47) 

Then $€(!I, 7) = cut T$€(Y) = = 0). (48) 

so $&Y> t )  eut (49) 

is a solution of equations (2) and (3) of the desired form. There will be a complete 
set of solutions of the form (39), $(y, t )  eut, with periodic $, if and only if T has 
a complete set of eigenfunctions. 

It is reasonable to assume that T does possess a complete eigenvalue spectrum 
but, in view of the difficulties encountered in the steady case, it is likely that 
the proof of this fact would be extremely difficult. In  any case, the solutions to 
the truncated problem (33) are of the form (39) since the matrices are finite. 

2.5. Stability criterion for the truncated problem 

If the coefficient matrix in (33) is periodic then (Coddington & Levenson 1955) 
there exists a fundamental solution matrix W ( t )  which is a solution of 

dW P J 
dt= (R  GIW’ 

W(0)  = I ,  

W ( t )  = P(t) exp ( t Q ) ,  

where I is the identity matrix and W is of the form 

(51) 

where P is a periodic non-singular matrix whose period is the same as that of 
the coefficient matrix, and Q is a constant matrix. The transformation T 
discussed in the previous section is just W(7) .  

The eigenvalues of Q can be found rather simply by integrating equation 
(50) from t = 0 to t = 7, then 

W(7)  = P(4 ~ X P  (7Q1 
= P(0) exp (7Q) 

= exp (7Q) (52) 

after noting that P is periodic. If {ej} ( j  = 1, 2, 3, . . ., N )  are the eigenvalues of 
W ( T ) ,  then (gj] ( j  = 1, 2, 3, ..., N ) ,  the eigenvalues of Q,  are 

aj = In (ej)/7. (53) 

The stability characteristics of the flow are determined by the real part of the 
vj’s. It should be noted that Im (aj) is only defined modulo (2n/7). 

3. Results for steady plane Poiseuille flow 
The base flow velocity profile is, for the steady flow, 

U = 1-4y2, I Y I  Q Q. (54) 



Stability of steady time-dependent plane Poiseuille $ow 185 

Since U is symmetric, the cross-coupling matrices J and K are identically zero 
and, hence, symmetric and antisymmetric disturbances are uncoupled. It has 
been customary (Lin 1955) to consider only those disturbances which have a 
symmetric streamfunction. However, we will consider disturbances with both 
symmetric and antisymmetric streamfunctions. The calculation of the matrix 
elements of F and G, equations (34) and (37)) is tedious but presents no special 
difficulties. 

The eigenvalues of the matrices were computed numerically using the QR 
algorithm (Wilkinson 1965; Parlett 1967). The determination of all the eigen- 
values of F ,  when F is 30 x 30, takes about one minute on an IBM 7094 and the 
running time is proportional to N3.  The output of the computer program is the 
N values of [crj]. In  order to facilitate comparison with the results of other 
investigations, we will give our results for the values of the complex wave speed, 

c j  = gj/ia. (55) 

Im(cj) < 0. (56) 

The flow will be unstable if, for some j, 

The eigenvalues are numbered in order of increasing imaginary part of cj. The 
order is taken to be that at  small R. 

3.1. Accuracy of the calculations 

There are a number of checks on the results of the calculation. A check on the 
performance of the eigenvalue routine is provided by a comparison of the sum 
of the eigenvalues with the trace. It was found in all cases that the sum of the 
eigenvalues differed from the trace by less than one part in lo6. Next one can ask 
whether or not the first eigenvalue of the matrix is a good approximation to the 
first eigenvalue of the Orr-Sommerfeld equation. Thomas (1953) has calculated 
cl, the eigenvalue which corresponds to the least stable mode, for eighteen sets 
of values of a and R.t In  general it was found that for sufficiently large values of 
N there is agreement to four significant figures between Thomas’s values and 
those obtained by the present method. The only major difference occurs in the 
value of Im (cl)  for a = 2.4 and R = 5000. Thomas lists the value 0.0170 and we 
find 0.010661. It appears likely that this is a misprint in Thomas’s paper. A 
further comparison is provided by the eigenfunction. Thomas tabulates the first 
eigenfunction for a = 2-0, R = 20,000. The maximum relative deviation between 
our results and those of Thomas is about 3 % and occurs very near the wall where 
the eigenfunction itself is very small. 

The effect of truncation, i.e. the number of terms retained in the expansion of 
#, has been examined in some detail. For fixed values of a and R the size of the 
matrix ( N )  was increased until the value of c1 became insensitive to the precise 
value of N .  At this point it was generally found that the next few eigenvalues 

t Note again that the values of a and R given by Thomas are exactly half of those in this 
paper because of the different length scale. Thomas’s values of a and R have been adjusted 
to  the length normalization used in this paper. 
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had also become virtually independent of N. For example, for 

a = 2.0, R = 20,000, 

the eigenvalues were calculated for N = 20, 30, 40 and 50. Examination of the 
results showed that as N was increased there was a rapid convergence of the value 
of ci to a limit. Taking N = 30 yielded a t  least the first ten eigenvalues with an 
accuracy of about 1 yo. For N = 40 the accuracy was about 0.1 yo. Similar cal- 
culations were also carried out for a = 2.2, R = 70,000. Even for this large value 
of aR it was found that N = 30 gave the first eigenvalue with an error of about 
15 yo in the imaginary part of c1 and eigenvalues two to  four with an error of 
about 1 yo. For N = 40 the first eleven eigenvalues were found with an accuracy 
of about 1 yo. 

3.2. Eigenvalue of the least stable mode 

The eigenvalues for a symmetric disturbance streamfunction have been com- 
puted as a function of Reynolds number for a fixed value of a. The values of a 
chosen ranged from 1.0 to 2.4 and the Reynolds number varied from 3200 to 
53,000. A table (table A) of the value of the first eigenvalue, cl, for all of theso 
cases has been deposited with the editor. The imaginary part of c1 is plotted 
versus R for fixed a in figure 1 and the real part of c1 is plotted versus R for fixed 
a in figure 2 .  From these figures it is apparent that Im (cl) is a complicated func- 
tion of a and R but that Re (cl) is, at  least over the range of a and R considered, a 
monotonically decreasing function of R for fixed a and a monotonically increas- 
ing function of a for fixed R. 

From figure 1, constant amplification rate curves, i.e. the loci of values of a 
and R such that I m  (cl) = constant, can be obtained. This has been done and the 
results are listed in tables 1 and 3. In  figure 3 the curves of constant amplification 
rate and the curves of constant wave speed are plotted in the (a, R)-plane. The 
neutral stability curve is indicated by Im(c,) = 0. Also shown on figure 3 
are points on the neutral curve computed by Stuart (1954) and Lock (1956). 
The neutral curve (*-- . )  obtained by Shen (1954) is also shown. (Shen’s 
curve is reproduced in Lin 1955.) The points given by Stuart and Lock, as 
well as Shen’s curve, were obtained using variants of the asymptotic method. 
It is clear that asymptotic methods give the same results as the expansion method 
used here on the lower branch of the stability curve. This is just the region, large 
R and small a, for which the asymptotic method is expected to be best. On the 
upper branch and near the critical point there is substantial disagreement be- 
tween the various asymptotic methods and the expansion technique althougli 
Lock’s results appear to be the most accurate of those obtained with asymptotic 
methods. Shen obtained a critical Reynolds number R, = 10,600 and a, = 3-15; 
Thomas found R, = 11,560, a, = 2.052; and the present method gives 

R, = 11,500, a, = 2.05. 

The eigenvalues for the antisymmetric disturbance streamfunction have also 
been calculated for values of a from 1.6 to 2.4 and values of the Reynolds 
number from 5000 to 52,000. The value of the first eigenvalue for each of these 
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cases is listed in table B which has been deposited with the editor. The imaginary 
part of c is plotted in figure 4 versus R for fixed a. It is apparent from figure 4 
that the imaginary part of c is proportional to  R-4, at least over the range of R 

-j 1.5 

+ 1.0 

+0.5 

N 

2 
X - * 
u 
v 

E 
H 

0.0 

-0.5 

4-0 x 103 lo4 2.0 x lo4 4.0 x lo4 
R 

FIGURE 1. Imaginary part of the first eigenvalue (Im(c,)) of the symmetric disturbance 
streamfunction versus R for various values of a. The numbers next to  the curves are the 
values of a. 

considered here. The eigenvalue whose imaginary part is plotted in figure 4 is 
c4 since for these values of a and R the imaginary part of c2 lies above the imagin- 
ary part of c4. Based on this study it can be concluded that disturbances with an 
antisymmetric streamfunction are stable for R 5 50,000 and it is probable that 
they are stable for all R. 
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FIGURE 2. Real part of the first eigenvalue (Re(c,)) of the symmetric disturbance stream- 
function versus R for various values of u. The numbers next to the curves are the values 
of a. 

2.4 

2.0 

U 

1.6 

c I 
2 0 -2 -4 -6 = Im (c,) x lo3 
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FIGURE 3. Curves of constant amplification, Im(c,) = constant (solid line). Curves of 
constant phase velocity, Re (cl) = constant (dashed line). These curves have been obtained 
by the expansion technique. Results of asymptotic method for neutral stability curve: 
dash-dot line, Shen (1954); 0, Stuart (1954); +, Lock (1956). 
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Re(c,) = 0.30 0.28 0.26 0.24 0.22 0.20 0.18 
R 

a I 

2.40 
2.20 
2.00 
1.90 
1.80 
1.70 
1.60 
1.50 
1.40 
1.20 

5,200 
6,640 
5,120 
4,360 
3,610 

11,560 
9,900 
7,800 
6,740 
6,680 

17,440 
14,800 
12,000 
10,400 
8,960 
7,160 

26,000 
23,000 
18,500 
16,500 
14,200 
12,180 
10,100 

40,000 
36,000 
30,000 
26,800 
23,200 
19,800 
16,800 
14,000 

TABLE 2. Constant wave-speed curves 

60,000 
50,200 
45,600 
39,500 
33,600 
28,100 
23,800 
19.100 

60,000 
51,600 
42,400 
37,800 
21,400 

3.3. T h e  higher eigenvalues 

As was mentioned above, if N is taken sufficiently large then we obtain a number 
of the higher eigenvalues. To our knowledge only Grohne (1954) has calculated 
any of the higher eigenvalues for plane Poiseuille flow and the disagreement 
between his results for plain Couette flow and those of Gallagher & Mercer (1964) 
casts doubt on the accuracy of Grohne's results for plane Poiseuille flow. 

Grohne calculated the first four eigenvalues for (in our notation) a = 1.74 and 
R between about 2 x lo3 and 10'. We have calculated the first four eigenvalues 
for a = 1.74 and Reynolds numbers up to about 50,000. In  figure 5 we show our 
results and Grohne's. It is evident tJhat there is considerable disagreement. 
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There is agreement in the general trend of the imaginary part of the eigenvalues 
but the magnitudes do not agree well. As for the real part, there is complete 
disagreement on the results for eigenvalues three and four. It would appear, in 
the light of our results and those of Gallagher & Mercer, that Grohne’s results are 
not reliable. 

3, 4 +0.8 

i 0 . 2  c 
c, 

2 4 4  3 

-0.1 1 I I I I 1 1 1 1 1  I 
103 104 105 

R 

FIGURE 5 .  Real and imaginary parts of the first four eigenvalues versus R for a = 1.74. 
Grohne’s results, dashed curves; expansion technique, solid curves. 

In  order to gain further insight into the behaviour of the various modes, the 
spectrum of eigenvalues has been examined in some detail for a single fixed 
wave-number (a  = 2.0) as the Reynolds number was varied from 1 to 50,000. 
For R 5 100 the behaviour of the eigenvalues is particularly simple. The real 
parts of the c, are independent of R and, with two exceptions, tend to group 
around a value of $, which is the average velocity in the channel. The imaginary 
parts of the c, are proportional to R-l. It is convenient to order the eigenvalues 
with respect to the size of the imaginary part of c, at low Reynolds number. It is 
then found that cl, c3, c6, c,, . . , are the eigenvalues of the symmmetric stream- 
functions and c2, c4, c6, c8, . . . are the eigenvalues of the antisymmetric stream- 
functions. The real and imaginary parts of c1 to c8 are plotted in figures 6 and 7. 

Several points should be noted from these figures. Only Im (cl) becomes nega- 
tive and hence there is only one unstable mode. This has been found to be true 
for all values of a for which the eigenvalues have been calculated and this indi- 
cates that there is probably never more than one unstable mode. The order of the 
eigenvalues is not maintained for R 2 800. The eigenvalues shown here can be 
generally divided into two groups for R > 1000. There is a group of fast modes 
for which Re (c,) > 0.9 and is apparently asymptotic to 1.0. This group includes, 
of those shown in figures 6 and 7, modes 3, 4, 5, 6, and 8. The Im (c,) for these 
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modes has very similar behaviour and in fact eigenvalues 3 and 4 coalesce as do 
5 and 6. Although it is not shown, there is another eigenvalue whose imaginary 

0.8 

h 

E 0 

0 
Y 

E 0 4  

0.0 
10' lo2 lo3 lo4 

R 
FIGURE 6. Real parts of the first eight eigenvalues versus R for a = 2.0. Note that ordering 
of the eigenvalues is by the magnitude of the imaginary part of the eigenvalue at low R. 
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FIGURE 7. Imaginary parts of the first eight eigenvalues versus R for a = 2.0. Not0 that 
the crossings do not represent degeneracies since the real parts of the eigenvalues are not 
equal at  the points where the imaginary parts are, and vice versa. 

part coalesces with c8. There is also a group of slow modes for which Re (c,) is 
a decreasing function of R. These include modes 1, 2 and 7 .  It should be noted 
that Im (c2) and I m  (c7) have similar behaviour which is different from that of the 
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'fast modes.' Finally, it should be noted that, although some of the eigenvalues 
coalesce, that is, become degenerate at high R, the crossings in figures 6 and 7 
do not represent degeneracies since the real parts are different where the imagin- 
ary parts cross and vice versa. 
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FIGURE 8. Comparison of the asymptotic formula for the eigenvalues of a symmetric 
disturbance streamfunction with the numerical values obtained from the matrix. 0, 
u = 2.16, R = 5000; +, u = 1.70, R = 8000. 

Although the numerical calculations yield only the first N eigenvalues it is 
possible to obtain the entire spectrum for any particular value of a and R. As 
was discussed in $2.3, cjb is approximated by the first N terms in the series ex- 
pansion. This approximation is only valid if the higher modes are decoupled 
from all other modes. If the higher modes are decoupled, then it is possible to 
derive an approximate expression for the higher eigenvalues. If mode n is de- 
coupled then (equation (33)) only the diagonal matrix element l?,, is retained in 
the equation for a,. Therefore, the amplitude function a,(t) is the solution of 

da, = linnan. 
dt (57) 

Since F,, is a constant, the nth eigenvalue IT, equals F,,. This can be true only 
13 Fluid Mech. 34 
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for large n and so /I, M yn M A,. Evaluating the matrix elements and substi- 
tuting A, for /3, and yn yields 

g Z n - 1  M - (Ai/R) + ia(g + 2/h,) (58)  

for disturbances with a symmetric streamfunction. The analogous expression 
for the disturbances with an antisymmetric streamfunction is 

gz, M - (,&R) + ia(Q + 2 1 ~ ~ ) .  (59) 

FIGURE 9. Real and imaginary parts of ths streamfunction of a symmetric disturbance. 
For all, a = 2.0. R C 

1 5,000 0.30 11 35 + i0.014182 
2 11,600 0.261294 + i0.000044 
3 20,000 0'237413 -i0.003681 

For a given a and R, if N is large enough, the upper eigenvalues of the matrix 
will overlap the region where the asymptotic expression for the eigenvalue is 
valid. Therefore the first N eigenvalues, gl to CT,, are the eigenvalues of the 
matrix and CT, for n > N is given by the asymptotic formula. In figure 8 the 
first 30 eigenvalues, for a symmetric streamfunction, obtained from the matrix 
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have been plotted for two different cases, a = 3-16, R = 5000, and 01 = 1.70, 
R = 8000, Previous calculation had shown that for these values of a and R only 
about 20 terms are needed in the approximate expansion of $. The last 10 
eigenvalues ought then to agree with the asymptotic formula. The real and 
imaginary parts of vn as given by the asymptotic formula, equation (58) ,  are 
also plotted in figure 8. It is clear that, except for a truncation error on the last 
two points, the agreement is excellent. This also indicates that for n > N the 
nth eigenfunction is approximately C,( y ) .  

3.4. The eigenfunctions 

Once the eigenvalues are known it is possible to obtain the eigenfunctions from 
a set of N linear equations with zero secular determinant. These equations can 
be solved to obtain the ratio of each coefficient to the first. The set of values 
[a,/a,] or [bn/b,] determines # t o  within a multiplicative constant. 

The first eigenfunction has been calculated for a number of values of a and 
R, corresponding to both stable and unstable conditions. Figure 9 shows the real 
and imaginary parts of $ for a = 2-0 and R = 5000 (stable), 11,600 (on the 
neutral curve), and 20,000 (unstable). The normalization adopted is $ ( O )  = 1. 
The most striking feature is the relative smallness of Im (4). In fact 

IIm ($)I < 0.025 

in all cases. Other features are that Re ($) is nearly independent of a and R and 
that Im (4) peaks up at y M 0.45. The major difference between stable and 
unstable conditions would appear to be the negative peak in Im ($) for stable 
conditions. We have calculated the streamfunction €or a number of other con- 
ditions and we always find the same general behaviour shown in figure 9. 

4. Results for modulated plane Poiseuille flow 
We next consider the stability of the time-dependent plane PoiseuilIe flow 

resulting from modulating the pressure gradient. Specifically we choose the 
pressure gradient to be 

ax = (2) [1-Acos(wt)]. (60) 

Here A is the dimensionless amplitude of the pressure oscillation and w is the 
dimensionless frequency of oscillation. The velocity field resulting from applying 
this pressure gradient between parallel plates is 

U = 1 - 4y2 - 4 A k 2  sin (wt) 

+ 4Ak-2(x: +x;)-l {[x, cos ( ky )  cosh (ky) + z,sin (Icy) sinh ( ky ) ]  sin (wt) 

+ [x2 cos (ky) cosh (Icy) -x,sin ( ky )  sinh ( ky ) ]  cos (wt)}, (61) 

where k2 = &R = ITP/VT, (62) 

x1 = cos (BIc) Gosh (@), (63) 

and x2 = sin (@) sinh (klc). ( 64) 
13-2 
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The velocity field consists of three parts, a steady parabolic profile due to the 
steady part of the pressure gradient, a constant profile which is out of phase with 
the oscillating part of the pressure gradient, and a shear wave (the term in the 
curly brackets) which matches the uniform oscillating flow to the zero velocity 
boundary condition. The characteristic thickness, 6, of the shear wave is 

6 = l / k  (65) 

where 1 is the width of the channel. It is clear that only if the driving frequency is 
very low, or R is small, will 6 be comparable to 1. 

It is clear from equation (61) that the velocity profile is symmetric about 
y = 0 and so the cross-coupling matrices J and K are again identically zero. 
Thus even for the time-dependent flow the symmetric and antisymmetric 
disturbances are decoupled. Only disturba,nces with a symmetric streamfunc- 
tion will be considered since these are the only one8 which led to instabilities in 
the steady flow. Therefore, the coefficients in the expansion of q5 are the solution 
of dA 

- = F ( t ) A ,  
at 

with F given by equation (34). 
Equation (66) is equivalent to N first-order differential equations. This set of 

N equations was numerically integrated N times from t = 0 to t = 7. The initial 
conditions for the first integration are al(0) = 1.0, a j (0 )  = 0 for j = 2, 3, ..., N ;  
for the second integration al(0) = 0, a2(0) = 1.0, a j (0 )  = 0 for j  = 3,4 ,  . . ., N ;  etc. 
The numerical integration was carried out using Ralston’s fourth-order Runge- 
Kutta method (Ralston 1962). This gave W(7) ,  see equation (50)) and the 
eigenvalues of W were calculated using the same routine which was used in the 
case of steady flow. 

4.1. Accuracy of the calculations 

The technique was tested by setting A = 0. Then the F matrix is independent of 
time and the eigenvalues of Q should be identical with the eigenvalues of F .  The 
disturbance wave-number was taken to be a = 2.04 and the Reynolds number 
R = 11,750. These values were chosen because they corresponded to a point 
very nearly on the stability boundary and it was believed that this would provide 
a severe test of the method since near the stability boundary IIm (e l ) [  is very 
small and this implies that ]ell is very close to unity. Therefore, a small error 
in el would result in a large error in Im (el). The largest error occurred, as was 
expected, in the imaginary part of cl. From F it was found that 

Im (cl) = - 2.0 x 10-5 

and from Q it  was found that Im (cl) = - 2.1 x 
differences were less than or about equal to 0.1 yo. 

For all other eigenvalues the 

4.2. Effect of varying the .frequency 

It can easily be shown that, if a, R and A are held fixed and w is varied, the ampli- 
tude of the velocity oscillations in the base flow will vary with w.  In  this case the 
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amplitude of the pressure oscillation is constant but the amplitude of the velocity 
oscillation varies. It is also possible, by varying A as well as w, to keep the ampli- 
tude of the velocity oscillation constant while the amplitude of the pressure 
oscillation varies. 

t r  
6.0 

0.0 Pressure amplitude 
consrant 

1.6 I 0.0 0 4  0 8  1.2 

L I I I I -  I 
0 20 40 60 80 100 

k 

FIGURE 10. The imaginary part of the eigenvalue of the least stable mode (Im(c,)) versus 
the frequency parameter k .  The wave-number is a = 2.04 and the Reynolds number 
R = 11,750. 

A series of calculations was carried out in which the disturbance wave-number 
a and the Reynolds number R were held constant while the amplitude of the 
oscillating part of the pressure gradient, as well as the frequency, was varied so 
that the amplitude of the oscillating part of the velocity in the base flow was held 
constant while the frequency of oscillation varied. The numerical values chosen 
were a = 2.04 and R = 11,750. This corresponds to a point just within the 
steady stability boundary; the wave number is equal to the critical wave-number 
and the Reynolds number is only slightly larger than the critical Reynolds num- 
ber. It is expected that the frequencies of interest are those which are comparable 
to the frequency of the unstable mode. This frequency is given by 

w1 = aRe(cl) (67 )  

and for these conditions w1 w 0.55. Calculations have been run for a range of 
frequencies between about &wl and 2w1. As w was varied, k of course varied, and 
A was adjusted so that the amplitude of the velocity oscillation was kept con- 
stant. The results are shown in figure 10, where Im (cl) is plotted as a function of 
k. The effect of the modulation is to increase Im (cl) and hence to stabilize the 
flow. 
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Lin (1955) has shown that the disturbance very near the wall has the form of a 
shear wave with an e-folding length, 

6,/1 M (2/W,B)+. (68) 

The ratio of the characteristic lengths of the disturbance shear wave and the 
driving shear wave due to the oscillation is 

Sols = k1(2 /w ,R)*  = (w/wl)*. (69) 

A scale of So/& is also shown on figure 10. It can be seen that the major stabiliza- 
tion occurs when 6 is comparable to 6, and this suggests that the shear wave due 
to the modulation interferes with the disturbance shear wave and decreases the 
rate of energy transfer from the base flow to the disturbance, thus stabilizing the 
flow. 

These results for periodically modulated flows are very precise. However, in 
an attempt to gain further understanding of the mechanism by which the flow 
is stabilized, we have examined the energy equation for the disturbance. The 
energy equation is of exactly the same form for a time-dependent base flow as 
for a steady base flow. Thus, just as in the steady case (see Lin 1955, p. 59), 
the flow can become unstable only if the product of the Reynolds stress and the 
gradient of the base flow, when integrated between the boundaries, is positive 
and large enough to outweigh the dissipation due to viscosity. Assuming that A 
is small, we have considered a perturbation expansion in A. We examined, 
following Lin, the form of the vorticity very near the wall. The zero-order term 
(in A) in the expansion of the vorticity satisfies a homogeneous diffusion equation 
but the first-order term is determined by an inhomogeneous diffusion equation. 
The forcing term contains the product of zeroth-order terms in the disturbance 
velocity and its derivatives with first-order terms in the base flow velocity and its 
derivatives. This provides the coupling of the modulated component of the base 
flow with the disturbance. After calculating the zeroth- and first-order terms in 
the vorticity the corresponding velocity components were calculated from the 
continuity equation and the definition of vorticity . Finally, the Reynolds stress 
near the wall (averaged over a wavelength of the disturbance and a period of the 
modulation) was calculated. 

The Reynolds stress, 7, is of the form 7,, + A27,. The term 7, is positive and is 
exactly that found by Lin. If (w/wl)3 = &,/a 2 1-5 then -r2 becomes negative and 
hence tends to stabilize the flow by decreasing the rate of energy transfer from 
the base flow to the disturbance. 

These calculations, which were carried out with the same approximations as 
used by Lin (1955, p. 62), are discussed here in order to illustrate the mechanism 
by which the modulation can stabilize the flow. Since they are both lengthy and 
approximate, we will not reproduce them here. 

If the amplitude of the pressure oscillation A is kept constant while the fre- 
quency is varied then the amplitude of the velocity oscillation will vary with 
frequency. A number of calculations of this sort have also been carried out and 
these results are also shown in figure 10. Again the oscillation stabilizes the flow. 

In  addition to varying the frequency at  constant amplitude, the amplitude 



Stability of steady time-dependent plane Poiseuille $ow 199 

can be varied at constant frequency. The results of a number of these calculations 
are shown in figure 11. Here a = 2.04 and k = 56.13. It is seen that, for this range 
of amplitudes, increasing A will monotonically increase Im (CJ and SO stabilize 
the flow. 

-8.0 
0.0 0.4 0.8 1.2 

A 

FIGURE 11. The imaginary part of the eigenvalue of the least stable mode (Im(c,)) versus 
A, the amplitude of the pressure modulation. The wave-number is a = 2.04 and the 
frequency parameter is k = 56.13. 

For larger modulation amplitudes the effects are somewhat more complex. 
We have carried out detailed calculations for a = 2.04, R = 11,750, k = 56-13, 
and A varying between 0.0 and 100.0. The results are plotted in figure 12. We 
find that initially as A is increased from zero only the lowest eigenvalue is 
substantially changed. The Im (cn) (n 2 2) are changed less than about 5 % for A 
in the range from 0.0 to 10.0. On the other hand, in this range Im (cl) increases 
nearly quadratically with A. It turns out, for this particular case, that Im (cl) 
becomes equal to Im(c,) at A approximately equal to 10.0 and hence mode 2 
becomes the least stable mode. For A < 100, the eigenvalue of mode 2 is virtually 
unaffected by the pressure modulation. In fact, in this range the Im (c2) slowly 
oscillates between 0.0478 and 0.0501. As A is increased further the Im (cl) first 
increases and then decreases to a relative minimum at A M 27. Im(c,) then 
increases, with one oscillation, as A is increased. For A between 20.5 and 34.5, 
c1 is the eigenvalue with the smallest real part. For A between 34.5 and 82.0, c2 
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is the eigenvalue of the least stable mode. Finally, as A is increased further the 
imaginary part of the eigenvalue of one of the higher modes begins to decrease. 
At A w 82 it is equal to Im (cz )  and a t  A w 85.5 it becomes negative, indicating 
that the flow is now unstable. For larger values of A the growth rate of this mode 

1 1 1 1  I l l 1  I I I I J  

+0.12 

0 

- 0.4 

U w 4k-l(k[- Ak-l[sin (wt )  - exp ( - k [ )  sin (wt + k c ) ] } ,  (70) 

A k - l <  1 (71) 

where 6 is the distance from the wall. If 
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then the shear wave hardly distorts the base flow a t  all. On the other hand, if the 

~ 

amplitude of the pressure oscillation is comparable to k the base flow near the 
wall is distorted. For 

Rk-l > 1 (72) 

2.4 

2 0  

U 

1.6 

there is even a back flow for part of the cycle. It is to be expected that this dis- 
tortion of the base flow would tend to destabilize the flow. 

- 

- 

- 

- 

- 
I I  I I I I 

It is clear from the results presented in figures 10, 11 and 12 that modulation 
can have an appreciable effect on the neutral stability curve. This is shown 
explicitly in figure 13, which shows the neutral stability curves for Ic = 56-13 and 
A = 0, 1 and 2 (A = 1 corresponds to AU/Uo z 0.0013). It can be seen that not 
only is the critical Reynolds number increased by the modulation but the width 
of the band of unstable wave-numbers is also decreased. From an examination 
of the results shown in figures 10 and 12 it  is apparent that a different choice of 
modulation frequency and/or amplitude would yield a different stability curve. 
However, all of these calculationsindicate that, provided that the amplitude of the 
oscillation is not too large, this stability curve would lie inside the steady stability 
curve. The increase in the critical Reynolds number and the width of the band 
of unstable wave-numbers depends upon the frequency and amplitude, but it 
can be inferred from these calculations that modulation of the pressure gradient 
stabilizes plane Poiseuille flow as long as the amplitude of the oscillation is small. 
For larger amplitudes of oscillation, it appears that the flow is destabilized by the 
modulation, with growth rates as much as an order of magnitude greater than 
that of the steady flow. 
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5. Discussion 
We have studied steady and modulated plane Poiseuille flow by the technique 

of expansion in a set of orthogonal functions. 
For steady plane Poiseuille flow we have calculated to high accuracy the 

neutral stability curve and curves of constant amplification (or attenuation), 
both of which are obtained from the eigenvalue of the least stable disturbance. 

We have also studied the other disturbance modes and found, for a number of 
values of the Reynolds number R and the wave-number a, the entire eigenvalue 
spectrum. As has been conjectured by a number of authors (Shen 1964 for 
example), no more than one mode is unstable at a given R and a in the region of 
the (R, a)-plane that we have investigated. The values obtained by Grohne 
(1954) for the eigenvalues of the four least stable antisymmetrical disturbances 
are in poor agreement with our results. 

We have recalculated, by our method, all of the results obtained by Thomas 
(1953) by numerical solution of a set of difference equations. In all cases the 
agreement is excellent. 

It has been shown that modulation of the pressure gradient in plane Poiseuille 
flow can have an important effect on the stability characteristics of the flow. 
Although it might have been thought, a priori, that an oscillating pressure 
gradient could set up a resonance and so cause instability, such is apparently not 
the case for small amplitudes of oscillation. 

The disturbance has the form of a shear wave near the wall. The oscillating 
pressuregradient also sets up ashear wave near the wall. It is apparently the inter- 
ference between these two waves which stabilizes the flow. If the thickness of 
the shear wave driven by the oscillating pressure gradient is either much larger 
or much smaller than the thickness of the disturbance shear wave, then the growth 
rates of the disturbance are not very much affected. However, if the thickness 
of the two shear waves is comparable then there is apparently an interference 
leading to a decrease in the rate of energy exchange between the base flow and 
the disturbances and thus stabilizing the flow. For moderate increases in the 
amplitude of oscillation, the flow becomes increasingly stable. 

For quite large modulation amplitudes the stability of the flow decreases, 
i.e. the magnitude of Im (cl) decreases. This appears to be due to the increasing 
distortion of the base flow by the oscillations. Regions of high shear are produced 
near the wall and for large enough amplitudes of oscillation there is even re- 
versed flow for part of the cycle. For a modulation velocity amplitude of about 
10 %of the steady velocity, the growth rate was found to be an order of magnitude 
larger than typical growth rates for an unstable disturbance of the steady flow. 

At a fixed frequency of oscillation and amplitude the wave-number and 
Reynolds number have been varied and a neutral stability curve has been ob- 
tained. The neutral stability curve for the modulated flow shows a higher 
critical Reynolds number and a narrower band of unstable wave-numbers than 
that for the steady flow. It appears that by picking an appropriate modulation 
frequency and choosing a large enough (but not too large) modulation amplitude 
the flow can be made stable at  very high Reynolds numbers. 
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There are no experiments with which the results of these calculations can be 
directly compared. However, the general features which appeared in the Couette 
(Donnelly et al. 1962; Donnelly 1964) and circular pipe Poiseuille (Gilbrech & 
Combs 1963) flow experiments can also be discerned in the results of these 
calculations. Modulation will stabilize the flow, and there is apparently an 
optimum frequency and amplitude of modulation for a given wave-number and 
Reynolds number. The only other experiments which we know of are those of 
Miller & Fejer (1964) and Obremski & Fejer (1967) on transition in an oscillating 
boundary layer. In these experiments oscillations were introduced into the 
free stream and the transition Reynolds number in the boundary layer was 
measured. 

While it is true that R,, the transition Reynolds number (the Reynolds number 
at which turbulent bursts first appear) and not R,, the critical Reynolds number 
(the Reynolds number at  which the laminar flow becomes unstable) was measured 
in the boundary layer experiments, it  is expected that R, would have the same 
qualitative behaviour as R,. They did not find any stabilizing effect of the oscilla- 
tions but found instead that the manner in which transition occurs depended on 
a ‘non-steady Reynolds number’. If this number was less than a critical value, 
transition appeared to be independent of the oscillations. If the ‘ non-steady 
Reynolds number ’ exceeded the critical value, the transition Reynolds number 
appeared to be independent of the frequency of modulation and to decrease 
with increasing amplitude of oscillation. 

The technique which we have used in this paper can be easily extended to 
the case of oscillations in a boundary layer. Such a study would seem to be 
desirable. 

One result of this study has been to demonstrate the utility of the expansion 
technique for studying the stability of steady as well as time-dependent flows. 
This has been made possible by the development of large, fast digital computers 
as well as the discovery of new algorithms (which are both rapidly convergent 
and stable) for calculating the eigenvalues of matrices. 

For a steady flow, if only one eigenvalue is sought and a reasonable estimate 
of this (complex) eigenvalue is available, this technique is relatively no faster 
than that of Thomas (1953). Thomas’s calculations, which used Lin’s results as a 
starting point, took about 300 hours on the SSEC. Our recalculation of Thomas’s 
results on the 7094 took 20 min. The speed ratio of about 900 to 1 is comparable 
to the speed ratio of the machines used. 

The advantages of the expansion technique for a steady flow problem are that 
it obtains the higher eigenvalues along with the least stable one and that it 
does not need an approximate value of the eigenvalue as a starting point. We are 
not aware of any other method for obtaining accurate growth rates for a modu- 
lated flow. 

One final point concerns Poiseuille flow in a circular pipe. In general the dis- 
turbances are three-dimensional and vary as cine, where 0 is the azimuthal angle. 
So far, only the axisymmetric modes (those with n = 0) have been studied. It 
has been shown (see e.g. Pekeris 1948) that these modes are stable. We have 
adapted the method used in this paper to study these three-dimensional dis- 
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turbances with arbitrary integer n. We are currently studying the &ability of the 
first five azimuthally varying m0des.t 
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is supported by the U.S. Office of Naval Research under Contract Nonr-266(84). 
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Ph.D. degree. It is Hudson Laboratories of Columbia University Contribution 
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